
Predicting GPU Performance and System Parameter
Configuration Using Machine Learning

Zhuren Liu, Trevor Exley, Austin Meek, Rachel Yang, Hui Zhao, Mark V. Albert
Department of Computer Science and Engineering, University of North Texas

{zhurenliu, trevorexley, austinmeek2, rachelyang}@my.unt.edu, {hui.zhao, mark.albert}@unt.edu,

Abstract—GPUs are widely used in accelerating computation-
intensive applications. Performance models are important for
designing high-performance and cost-efficient GPUs. In this
work, we developed machine learning models that can accurately
predict GPU system performance. Our model can identify impor-
tant features that can provide insights to designers on the most
important hardware system parameters when executing their
applications. We also developed a model for predicting minimum
system configuration parameters based on performance. Our
model can provide system configuration recommendations for
users to meet their performance requirements.

Index Terms—GPU, performance prediction, system recom-
mendation, system parameters, system configuration

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) have

become a strong challenger to the conventional workhorse

of computing, i.e., the CPUs. Nowadays, we can find GPUs

in various systems, from mobile devices to high end servers

[3], [6]–[8], [15], [16], [18]. GPUs can be either lightweight

and power efficient, or performance-centric and power hungry.

Studies have shown that changes in hardware configurations

(such as the memory capacity and number of cores) can lead to

significant changes in GPU performance. This presents chal-

lenges to customers who needs to find an optimal GPU that can

fit their performance requirements within their budget. There-

fore, it is important to develop some models for performance

prediction and system configuration recommendation that can

provide customers with some insight about the systems they

want to select.

Machine learning techniques have been used to interpret

patterns from training data and make decisions (such as classi-

fication and prediction) with reduced interaction from humans.

A machine learning model can be used to predict the system

performance and this can help with design space exploration.

Prediction of accelerator performance has been explored by

prior work [4], [12], [14], [20]. Such techniques include

analytical model-based prediction [20], source code with idiom

recognition [4], [14], and automatically constructed prediction

models [12]. Most of these approaches use performance as the

predictor output, that is, given a system configuration, they can

predict the performance. However, they do not provide more

insights about which system parameters have more significant

impact on the performance. In addition, they require a user

to have a knowledge of the system but cannot recommend a

system parameter configuration given the desired performance

from the user.

Fig. 1. High level architecture of our proposed prediction model.

In this work, we developed machine learning methods that

can predict GPU performance, provide feature importance

analysis, and give system configuration recommendations. In

particular, we first built prediction models using SVM for GPU

performance prediction. Then, feature importance was derived

from the prediction models using random forest to evaluate

the impact of different features on system performance. A

SVC machine learning model for reverse engineering is also

built to recommend system parameter configuration in order

to meet user requirements in performance. Our results show

that our performance prediction model has a normalized root

mean square error (RMSE) lower than 0.07, and the R2 score

varies from 79% to 94%. Our model for system configuration

recommendation also has high accuracy (up to 97%).

Our major contributions in this work include:

• We created machine learning models to predict GPU

system performances with high accuracy.

• We provided a detailed feature importance analysis. Our

analysis can provide insights on what impact different

system parameters can have on the system performance.

• We developed a prediction model for system configura-

tion recommendation. Our recommendation model can

help users to find a system configuration that can reach

their performance target.

II. APPROACH

A. Prediction Model Overview
Figure 1 shows the high level view of our proposed frame-

work. The first stage is to select GPU system configuration

parameters that can impact the performance. The next step

is to configure the GPU systems using these parameters and

collect the training data through benchmark execution. We se-

lected several representative applications from the benchmark

suit ispass-2009 [9] in our experiments. Further details are

discussed in the following subsections. After the training data

is collected, it is fed into the prediction model for training. We

253

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/22/$31.00 ©2022 IEEE
DOI 10.1109/ISVLSI54635.2022.00056

20
22

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

siu
m

 o
n

VL
SI

 (I
SV

LS
I)

|
97

8-
1-

66
54

-6
60

5-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
VL

SI
54

63
5.

20
22

.0
00

56

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. GPGPU architecture

also go through steps to tune the model accuracy. After the

model is trained, we can use it to either predict the system per-

formance or generate system configuration recommendations.

The model also generate the correlation between the inputs

and output so that we can analyze the importance of each

system parameter (which is also called feature in this paper).

B. Approach
We used a supervised machine learning model for performance

prediction. A unique feature of our model is that we also

provided feature importance information that can help users

to understand the role of an input feature in determining the

output, i.e. system performance in this case. While there have

been several models proposed for performance prediction in

CPUs and GPUs [4], [12], [14], [20], they do not provide

the feature importance analysis. In fact, such information is

very important to both system designers and users because

this can help them to build or find an optimal product. Other

than predict performance using system parameters, our model

can also perform the reverse prediction. That is, given a target

performance and part of the input features (system configura-

tion parameters), we can predict the remaining parameters so

that a system configured with these parameters can reach the

performance target. This technique is in fact a kind of reverse

engineering and it has use cases in reality. For instance, a

customer wants to purchase a GPU and there are different

categories of GPUs to select from with different costs. He has

some requirements in execution time and can select a GPU

with large memory but fewer Streaming Multiprocessors, or

smaller memory with more Streaming Multiprocessors. Using

our model, he can find a product that can meet his performance

requirement and then select the most economic system.

Feature selection is a important part of machine learning, it

is a way of trimming down the number of input variables when

devising a prediction model. The reduction in the number

of input variables can decrease the computational cost and

improve the model accuracy. In our case, the features are

from the configurations in GPU systems. Figure 2 shows

the architecture of a modern GPGPU. It consists of mul-

tiple Streaming Multiprocessors (SMs), and several layers

of memory partitions. Inside each Streaming Multiprocessor,

there are control units, registers, execution pipelines, scratch-

TABLE I
CONFIGURATION SETTINGS

Configuration Settings
SM 2,3,6-8,12-15,20-24,30-35,42-48,56-63,72-80,90-99
MM 1 - 10

Shared Memory 8KB, 16KB, 32KB, 64KB
Shader Register 12288, 24576, 49152

Shader Core 2048:32, 1024:32, 1536:32
L1 32KB / 64KB, 4-way set assoc, 64B lines, LRU
L2 64KB / 128KB, 8-way set assoc, 64B lines, LRU

Number of Streaming Multiprocessors (SM), Number of Memory Controllers
(MM), Size of shared memory per SIMT core (Shared memory), Number of
registers per shader core (Shader Register), Shader core pipeline configuration
(Shader Core), L1 cache (L1), L2 cache (L2).

pad memory, and caches. Through experiments, we found

that the most important features for our prediction models

are the number of Streaming Multiprocessors, number of

Memory Controllers, Shader Register File size, number of

Shader Cores, L1 Configuration, and L2 Configuration. We use

Instruction per Cycle (IPC) as an indicator for performance.

C. Data Collection

Table I lists our selected system configuration parameters as

the feature inputs for our machine learning model. It also

shows the parameters’ possible values and ranges. In our

experiments, we created system settings using different combi-

nations of these parameters. Different configuration parameters

can lead to different IPC for a benchmark. Note that some

of the configuration options are not continuous, such as the

number of Streaming Multiprocessors. These are constraints

from the GPGPU-sim simulator. There also exists some

interrelations between certain parameters. For example, the

number of Streaming Multiprocessors and Memory controllers

is related. This is because the number of Memory controllers

and Streaming Multiprocessors is determined by the mesh

interconnection network size. All our training data is collected

using the benchmarks suite of ispass-2009 [9]. This benchmark

suite is widely used in GPU performance evaluation. Among

all the benchmarks in the suite, we select five that are repre-

sentative of different types of GPU applications. The amount

of training data collected for each benchmark is determined by

the possible configurations’ variations. Instead of real GPUs,

we used GPGPU-sim [2] to simulate the benchmark executions

because it is not feasible to find hardware systems that match

all the configurations we want to test.

Data collected from each benchmark are extracted directly

from the configuration file. Streaming Multiprocessors, Mem-

ory Controllers, Shader Register, and IPC are stored as in-

tegers. Shader Core, L1 Configuration, and L2 Configuration

data are stored as strings. Ideally, we would want them to

be of the same type so that we changed the strings to an

integer representation. Shader core, L1 Configuration, and L2

Configuration are classified as different classes then saved.

III. MACHINE LEARNING MODEL DESIGN

In this section, we provide design details of our machine

learning models.

254

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

A. Support Vector Machines and Support Vector Regression
A very popular classification and regression technique used

in machine learning is the support vector machines (SVM).

The SVM algorithm creates a line or a hyperplane which

tries to separate the data into classes, often after the data

has been transformed using nonlinear kernels, allowing the

borders between classes to be nonlinear in the original feature

space. The data is separated so that the maximum margin is

the optimal hyperplane.

However, SVM can only deal with binary data. In order to

predict a discrete value such as the performance, we choose to

use support vector regression (SVR). Support vector regression

is based on the same principles as SVM. As described in

prior work [1], the regression problem can be seen as a

generalization of the classification problem. Therefore, instead

of returning a finite set in classification, the model returns

a continuous-valued output. Unlike other simple regression

models, SVR tries to find the best fit hyperplane with the

maximum number of points.

B. Feature Importance with Random Forest
To design a prediction model, it is important to have an

accurate and interpretable model in many cases. A good

way of understanding what causes the model to perform the

way it does is feature importance. Feature importance can

help understand a problem by providing which features are

relevant. As a supervised learning algorithm, random forest

takes advantage of ensemble learning for classification and

regression. There is a built-in feature importance computation

based on Gini importance (or mean decrease impurity) and

mean decrease accuracy in random forests. Gini importance

is derived from the random forest structure. Based on the

average of all trees in the forest, we can then determine the

importance of each feature. Sklearn’s implementation for both

random forest regressor and random forest classifier is based

on this idea [17].

We used Scikit-learn’s (sklearn) implementation of SVM,

SVR, and random forest for our prediction model. Sklearn

[17] is a machine learning library in Python. It features a

collection of classification, regression, and clustering algo-

rithms. It also incorporates widely used numerical Python

libraries such as NumPy. We experimented with several dif-

ferent classification (Lasso, Ridge Classification, K-Nearest

Neighbors Classifier) and regression (Bayesian Regression,

Naive Bayes) algorithms and settled on SVM and SVR for the

prediction model. Compared to the other algorithms that we

have tried, SVM and SVR were selected because they fit best

with our input data structure and have the best accuracy. The

random forest algorithm in sklearn was selected for our feature

importance portion. The algorithm provided by sklearn has a

feature importances property that can be used to retrieve the

relative importance scores of each input feature.

C. Validation of Machine Learning Models
Cross-validation is a validation technique for assessing how

well the results generalize on an independent data set by

rotating which portion of a data set is used for training and

which is used for testing. It is a commonly used statistical

method in machine learning to evaluate the accuracy of the

given prediction model. However, when using cross-validation

to tune hyperparameters or select among many models, the

same data are used to tune and evaluate a model when using

Cross-validation. This can lead to inflated accuracy of the

prediction model due to potential overfitting. To avoid this,

one can keep a hold-out test set with cross-validation used for

hyperparameter tuning. However, the hold-out test sets needs

to be large enough to be reliable, which is difficult with limited

data. One approach to overcoming this problem is to use nested

cross-validation. Nested cross-validation is a variant of cross-

validation which also rotates the test set while cross-validation

is performed on the training and validations sets used for

hyperparameter tuning. In other words, nested cross-validation

’nests’ the optimization of the hyperparameter into the model

selection. Nested cross-validation separates the data into a

series of test, train, and validation data. It runs a grid search on

each of the training sets to get an approximately maximized

score by fitting the model. Then this score is maximized by

selecting the hyperparameters in the validation set. Finally, by

averaging the test set scores over the dataset splits, it’ll get

the estimate of the generalization error.

In this study, we use nested k-fold cross-validation for

the performance prediction model and nested stratified k-fold

cross-validation for the system recommendation prediction

model. k-fold cross-validation is a validation technique that

separates the data into k consecutive folds. Each fold is used

only once as the test/validation set, while the remaining k-1

folds are used as the training sets. Stratified k-folds cross-

validation is a variation of the k-fold cross-validation by

returning stratified folds. Unlike traditional k-fold, stratified k-

fold preserves the percentage of each group for each fold. This

ensures that each fold of the dataset has the same proportion

of observations with a given label, which can be helpful with

imbalanced class distributions. The reason that we choose

nested k-folds for the performance prediction model is due to

both our model type and data. For our system recommendation

prediction model, we used nested stratified k-fold. Some of the

configurations in our data are not equally distributed. This can

result from either the configuration not being executed on the

benchmark or the distribution among the configuration setting

is not equal. For example, MM has ten different values, with

1 appearing over 1000 times and 10 appearing only 144 times.

Using nested stratified k-fold can eliminate the inaccuracy

caused by imbalanced class distribution.

D. Feature Importance Analysis

Feature importance is a technique that calculates a score

for each feature representing its importance. We used the

random forest algorithm provided by sklearn to implement

this function. We ran the feature importance when predicting

the IPC with our benchmarks, which turns out to be highly

representative and can better serve the purpose of our model.

255

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Predicted value vs. Actual value scatter plot with 95% confidence interval, X axis is Actual Value, Y axis is Predicted Value

Fig. 4. Residual plot, X axis is Predicted Value, Y axis is Residuals

IV. EXPERIMENTAL EVALUATION

This section consists of three parts: performance prediction,

feature importance analysis and system configuration rec-

ommendation. As mentioned in the previous sections, the

training data we collected is not equally distributed, and

the configurations for each of the benchmarks also differ.

However, our evaluation shows this does not affect the ac-

curacy of our model. All of our experiments were run on the

computing nodes on the Lonestar6 system in TACC’s high-

performance computing systems. Each compute node has two

AMD EPYC 7763 processors and 256 GB of DDR4 memory.

Each processor has 64 with 128 cores in total. All the cores

are running at 2.45 GHz, which can be boosted up to 3.5 GHz.

We ran our benchmarks with CUDA 9.1 and Ubuntu version

16.04 on GPGPU-sim 4.0 [2].

A. Performance Prediction
The purpose of our model is to predict a performance value

(IPC) with the given configurations. IPC values are collected as

we ran each benchmark with different configuration settings.

We used a regression model as the IPC values we collected are

continuous. A model was constructed for every benchmark.

The root mean square error (RMSE) was used to optimize

the regressor and assess the performance of our regression

model. Coefficient of determination (R2 scores) was used as an

alternative measure of how well our model works. R2 scores

are used to determine the variance of the regression model.

For instance, a 0.8 R2 score indicates that the variance of

the independent variable explains 80% of the variance of the

dependent variable.

As shown in Table II, all of the benchmarks have a

normalized RMSE of 0.077 or lower. normalization of the

RMSE is calculated by using the average RMSE/(Max value

- Min value). This produces a value between 0 and 1, with

values near 0 being better fitting values. BFS has an R2

TABLE II
PERFORMANCE PREDICTION

Benchmarks Avg. RMSE Normalized RMSE Avg. R2 Best R2
BFS 0.684 0.071 0.798 0.820
LPS 2.862 0.058 0.943 0.947
NQU 0.335 0.059 0.928 0.936
STO 54.173 0.077 0.905 0.908

MUM 0.109 0.046 0.911 0.916

Avg. RMSE: The average Root Mean Square Error for each benchmark
(range differs); Normalized RMSE: Normalized Root Mean Square Error
with 1 being worst and 0 being best; Avg. R2 score: Average Coefficient
of determination with 1 being best and 0 being worst; Best R2 score: Best
Coefficient of determination with 1 being best and 0 being worst.

score of 0.798, while all other benchmarks are over 0.9.

The reason for BFS’s R2 score being low is due to the

data gathered. Some of the features show no relevance to

the performance. For example, the L2 configuration has no

influence on the performance. This is because many variations

of the L2 configurations are not important to this benchmark’s

performance. In other words, the L2 configuration is not the

bottleneck for the performance of BFS.

The predicted vs. the actual value scatter plots for each

benchmark, as shown in Figure 3, were created to show

the prediction ability of our model. The dots are created as

transparent for each point for easier viewing or overlapping

dots. The figures show that our points are close to the fitted

line, with a confident band to narrow to show. The dots are

plotted as transparent. The range of values for each benchmark

is different, as seen in the figure, with STO having a wide

range and MUM having the least variation in range. While

other benchmarks are distributed quite equally, MUM clusters

in the range of 1.4 to 2.0 with a few outliers, hence the figure

skewing to the left.

A residual plot is shown in Figure 4. A residual plot is a

good way of showing if our data is suited for a regression

model. The data shows a fairly random, uniform distribution

256

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. System recommendation prediction results, Streaming Multiprocessors (SM), Memory Controllers (MM).

Fig. 6. SM Confusion matrix for the benchmark NQU Fig. 7. MM Confusion matrix for the benchmark STO

TABLE III
RANDOM FOREST FEATURE IMPORTANCE RANKINGS

Rank BFS LPS MUM NQU STO

1 L1 MM MM SM MM
2 SM SM Registers MM SM
3 Registers Registers SM L1 L1
4 MM. L2 L1 Registers L2

The top four important features, with rank 1 being the most important, are
shown with the random forest feature importance ranking. We used short
names for system parameters, including the number of Streaming Multiproces-
sor (SM), the number of Memory Controllers (MM), L1 Configuration (L1),
L2 Configuration (L2), the number of registers per shader core (Registers).

around the horizontal axis (target) for all the benchmarks,

suggesting that our choice of the model is an appropriate one.

MUM has a few outliers, skewing the graph toward the top.

The distribution of the residuals of each benchmark can be

seen in the histogram left of the residual plot. The histogram

shows that our data for all benchmarks are normally distributed

around 0, indicating that our model fits well with the data. The

R2 scores for both training and test sets are calculated with

the residual plot. We observed a slightly higher R2 for training

sets and high R2 scores for training and testing sets. For the

benchmarks LPS, MUM, NQU, and STO, both R2 scores for

training and testing sets are over 0.9, indicating a very good fit

for our model. Although for BFS, we have a lower R2 score of

0.824 (training set) and 0.791(test set), it still shows that our

model performs well. This observation shows that our model

generalizes well with all of the tested benchmarks.

B. Feature Importance
The feature importance, also known as variable importance,

helps to improve the understanding of a problem by indicating

relevant features. This can direct us on where to improve the

model during feature selection and provide the relevance infor-

mation to users. Random Forest feature importance was used

in our design to describe the importance of each feature when

predicting the performance. We first used cross-validation to

get the best parameter for our estimator (random forest re-

gressor). This is done with the GridSearch() function provided

by sklearn. We then ran the property feature importances in

RandomForestRegressor() 20 times with the best parameters

for our estimator. Finally, we calculate the average for all

the runs and gather the results. Table III shows the top four

features we gathered from running Random Forest feature im-

portance for each benchmark. As seen in Table III, Streaming

Multiprocessors (SM) and Memory Controllers (MM) appear

in the top 4 features on every benchmark. This observation

somewhat aligns with what we were expecting. The increase or

decrease in SMs or MMs affects the performance drastically.

The number of registers per shader core (Register) and the

L1 Configuration (L1) are the following most commonly

important features. However, our results show that different

parameters show different important to these benchmarks.

C. System Configuration Parameter Recommendation

The previous sections evaluated the prediction models for

performance and the significant features when predicting the

performance (feature importance). In this section, we evaluate

the prediction model for system recommendation. This is a

very useful feature of our model and it can have useful appli-

cations in the real world. This section presents the accuracy

for two of our configurations with our model trained on each

of the benchmarks with SVM. In our reverse prediction model,

given a target performance and part of the system parameters,

we can predict the remaining parameter so that the system can

achieve the performance goal. As mentioned in the previous

section, we found that SM and MM are the two most important

features when predicting performance. Therefore, we develop

our model to predict the SMs and MMs, given the performance

and some of the other configurations.

We use the support vector classifier (SVC) provided by

sklearn [17] as the supervised learning method with nested

257

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

cross-validation to train our model. Our training data shows

data imbalances in the configurations SM and MM, making

it unsuitable to use KFold for the nested cross-validation.

Stratified K-Fold is chosen here as it is the improved version of

the K-fold by ensuring each fold of the dataset has the same

proportion of observations with a given label. A confusion

matrix was plotted for each benchmark to help us understand

how well our model is performing in predicting both SM and

MM. However, a confusion matrix is very large and we can

only show part of it. Figure 6 is an example of a portion of

SM’s confusion matrix for benchmark NQU. Figure 7 shows

the entirety MM’s confusion matrix for benchmark STO.

Figure 5 shows the results we collected from our training.

The average accuracy when predicting SM varies between 73-

97%, with the highest average being the benchmark STO and

the lowest being BFS. The highest accuracy can reach 99%

accuracy when predicting SM. The average accuracy varies

more when predicting MM, with LPS, MUM, and STO having

higher accuracy and BFS having a less accuracy. The highest

accuracy can go up to 100% when predicting MM. The low

accuracy of BFS is due to our training data because BFS needs

relatively lower resource compared with other benchmarks.

Therefore, some features do not affect the performance are still

collected to make our training process consistent. However,

BFS has many different configurations generating the same

performance and this compromised the accuracy of our model.

In general, our results match with the observation we have

with feature importance, indicating that we have a reliable

prediction model.

V. RELATED WORK

Machine learning approaches have been used to analyze micro-

architectural designs in design space exploration [5], [13].

Simulation tools such as GPGPU-Sim [2] are widely used

to estimate GPU performance. By constructing power and

performance regression models from a limited number of

training points, techniques proposed in Stargazer [10] and

Starchart [11] can decrease the number of simulation points

required to explore a GPU’s design space. Baldini et al.

demonstrated that machine learning approaches can be used

to create accurate GPU acceleration prediction models. [3]

Wu et al. used performance counter values from hardware

configurations to estimate a GPGPU kernel’s performance and

power on various hardware configurations [19]. Our approach

differs from these techniques because our machine learning

model can not only predict GPU performances but also support

parameter importance analysis and system recommendation to

meet performance requirements.

VI. ACKNOWLEDGMENTS

This work is supported in part by NSF Grants 1828105,

2046186, 2008911.

REFERENCES

[1] Mariette Awad and Rahul Khanna. Support Vector Regression, pages
67–80. Apress, Berkeley, CA, 2015.

[2] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and
Tor M. Aamodt. Analyzing cuda workloads using a detailed gpu

simulator. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, pages 163–174, 2009.

[3] Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu
performance from cpu runs using machine learning. In 2014 IEEE
26th International Symposium on Computer Architecture and High
Performance Computing, pages 254–261. IEEE, 2014.

[4] Laura Carrington, Mustafa M Tikir, Catherine Olschanowsky, Michael
Laurenzano, Joshua Peraza, Allan Snavely, and Stephen Poole. An
idiom-finding tool for increasing productivity of accelerators. In Pro-
ceedings of the international conference on Supercomputing, pages 202–
212, 2011.

[5] Xianwei Cheng, Hui Zhao, Mahmut Kandemir, Beilei Jiang, and Gayatri
Mehta. Amoeba: a coarse grained reconfigurable architecture for
dynamic gpu scaling. In Proceedings of the 34th ACM International
Conference on Supercomputing (ICS). ACM, 2020.

[6] Xianwei Cheng, Hui Zhao, Mahmut Kandemir, Saraju Mohanty, and
Beilei Jiang. Alleviating bottlenecks for dnn execution on gpus via
opportunistic computing. In Proceedings of the 21st International
Symposium on Quality Electronic Design (ISQED). IEEE, 2020.

[7] Xianwei Cheng, Yang Zhao, Mohammadreza Robaei, Beilei Jiang, Hui
Zhao, and Juan Fang. A low-cost and energy-efficient noc architecture
for gpgpus. In Proceedings of the ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS). ACM/IEEE,
2019.

[8] Xianwei Cheng, Yang Zhao, Hui Zhao, and Yuan Xie. Packet pump:
Overcoming network bottleneck in on-chip interconnects for gpgpus. In
Proceedings of the 55th ACM/ESDA/IEEE Design Automation Confer-
ence (DAC). ACM/ESDA/IEEE, 2018.

[9] gpgpu sim. Github - gpgpu-sim/ispass2009-benchmarks: Benchmarks
used in the gpgpu-sim ispass 2009 paper, 2022.

[10] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Stargazer:
Automated regression-based gpu design space exploration. In 2012
IEEE International Symposium on Performance Analysis of Systems &
Software, pages 2–13. IEEE, 2012.

[11] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Starchart: Hard-
ware and software optimization using recursive partitioning regression
trees. In Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques, pages 257–267. IEEE, 2013.

[12] Ali Karami, Sayyed Ali Mirsoleimani, and Farshad Khunjush. A statis-
tical performance prediction model for opencl kernels on nvidia gpus.
In The 17th CSI International Symposium on Computer Architecture &
Digital Systems (CADS 2013), pages 15–22. IEEE, 2013.

[13] Benjamin C Lee and David M Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power prediction.
ACM SIGOPS operating systems review, 40(5):185–194, 2006.

[14] Jiayuan Meng, Vitali A Morozov, Kalyan Kumaran, Venkatram Vish-
wanath, and Thomas D Uram. Grophecy: Gpu performance projection
from cpu code skeletons. In SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE, 2011.

[15] John Nickolls and William J Dally. The gpu computing era. IEEE micro,
30(2):56–69, 2010.

[16] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. Gpu computing. Proceedings of the IEEE,
96(5):879–899, 2008.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[18] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc.
A performance analysis framework for identifying potential benefits
in gpgpu applications. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages
11–22, 2012.

[19] Gene Wu, Joseph L Greathouse, Alexander Lyashevsky, Nuwan
Jayasena, and Derek Chiou. Gpgpu performance and power estimation
using machine learning. In 2015 IEEE 21st international symposium
on high performance computer architecture (HPCA), pages 564–576.
IEEE, 2015.

[20] Yao Zhang and John D Owens. A quantitative performance analysis
model for gpu architectures. In 2011 IEEE 17th international symposium
on high performance computer architecture, pages 382–393. IEEE,
2011.

258

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 04,2023 at 22:29:52 UTC from IEEE Xplore. Restrictions apply.

